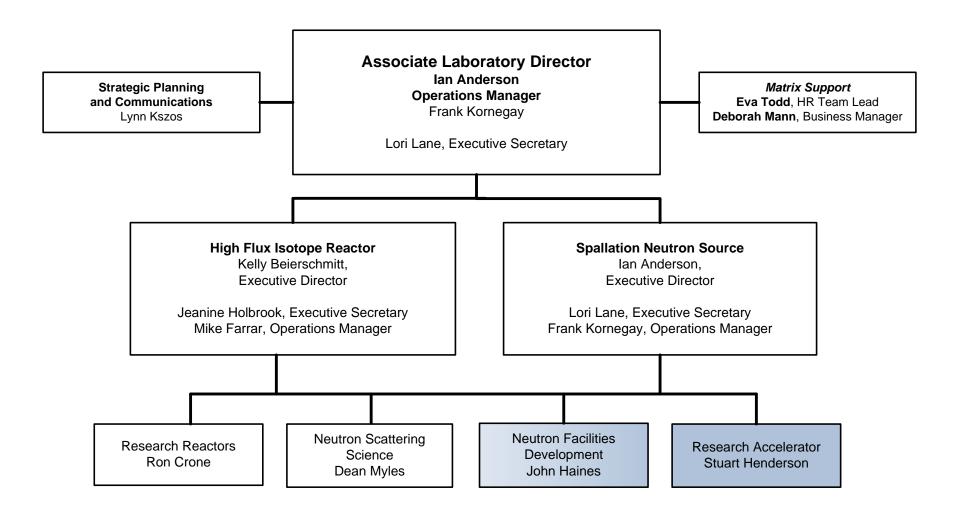
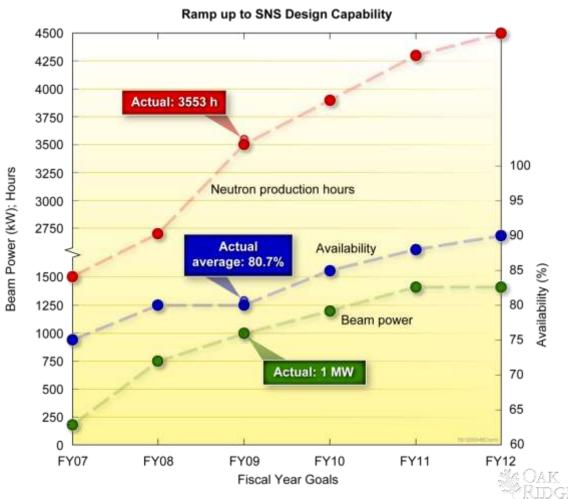

Neutron Sciences at Oak Ridge National Laboratory

Presented to Accelerator Advisory Committee


Ian Anderson Associate Laboratory Director

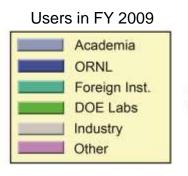
February 2, 2010

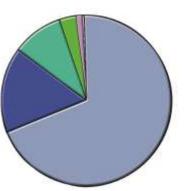

Neutron Sciences Directorate

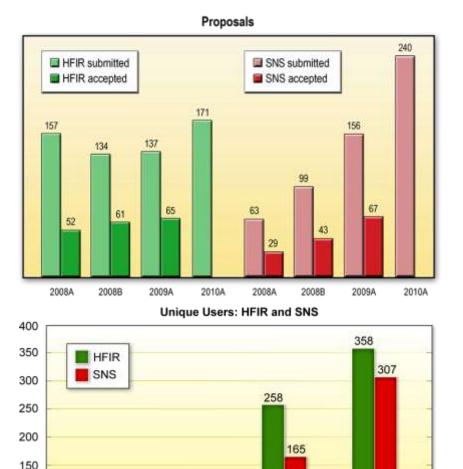
We are following our ramp up plan - reliability is our primary goal

SNS Operating Statistics (FY 2009)

- Neutron production
 hours: 3553
- Average availability 80.7%; availability as high as 98%
- Beam power on target:
 1 MW
- Proton bunch intensity: 1.55 x 10¹⁴ protons per pulse


3 Managed by UT-Battelle for the U.S. Department of Energy


Accelerator Advisory Committee


The number of unique users is increasing rapidly as we build to capacity

User Statistics – FY 2009

- HFIR: Unique users: 358 Total users: 888 Proposals: 137 Experiments: 198 Over subscribed at a rate of 2.05
- SNS: Unique users: 307 Total users: 469 Proposals: 156 Experiments: 106 Over subscribed at a rate of 2.48

72

24

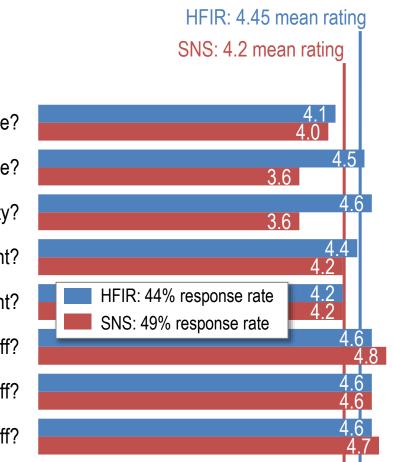
FY08

FY09

FY07

Accelerator Advisory Committee

100


50

0

42

FY06

Users are generally satisfied

FY 2009 survey questions and ratings:

How satisfied were you with . .

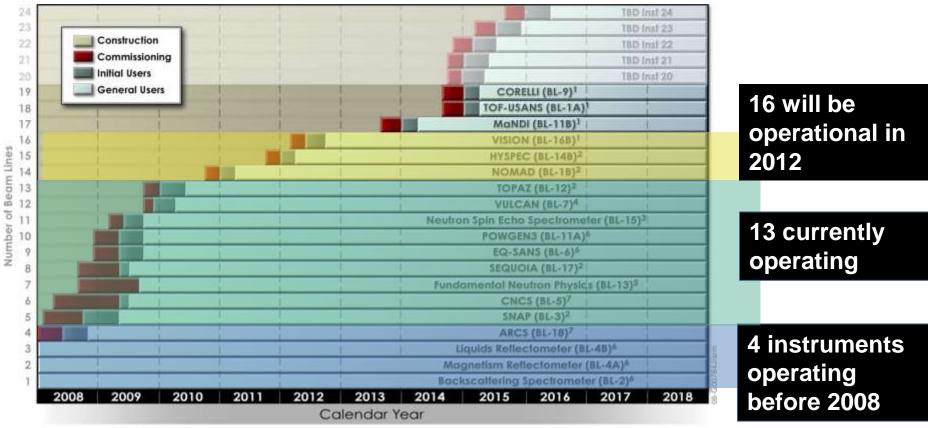
... facility operation schedule?

... schedule?

... performance of the facility?

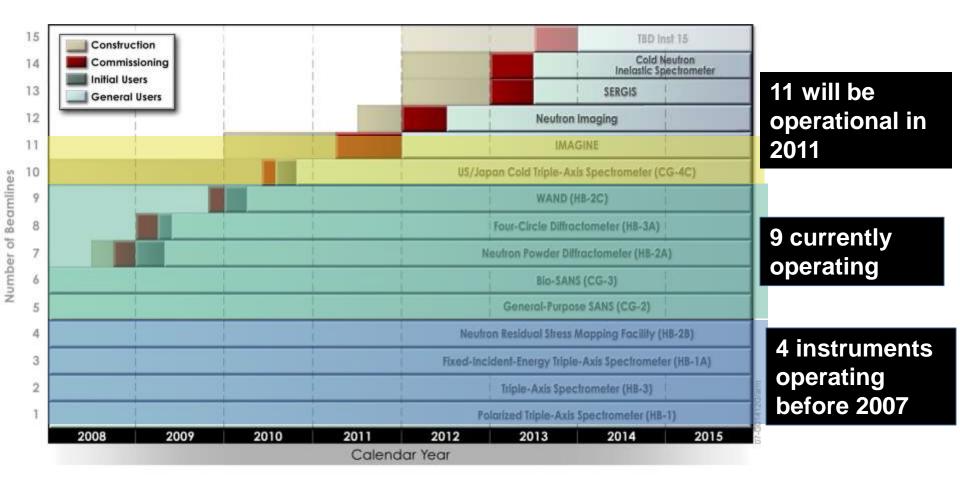
... performance of the instrument?

... performance of the sample environment?


... support for users provided by scientific staff?

... support for users provided by user services staff?

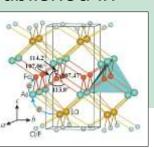
... support for users provided by technical staff?


Completion of instruments continues according to plan

Funding: ¹SING-II; ²SING-I; ³Jülich; ⁴Canada Fund for Innovation; ⁵DOE-NP; ⁶SNS; ⁷DOE-BES.

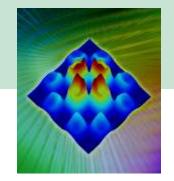
Adding capability at HFIR

Our scientific productivity is increasing


Publications (CY 2009 to-date)

- SNS: 162 papers, with ~692 unique authors
- HFIR: 107 papers, with ~435 unique authors

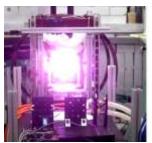
"Magnetic order close to superconductivity in the ironbased layered $LaO_{1-x}Fe_xAs$ systems" Clarina de la Cruz, et al., 2008. *Nature* 453:899-902


421 citations since published in

2008

Recent paper gives strong evidence that, if superconductivity is related to a material's magnetic properties, the same mechanisms are behind both copper-based high temperature superconductors and the newly discovered iron-base superconductors

Mark Lumsden and Andy Christianson et al. Nature Physics



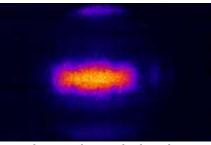
8 Managed by UT-Battelle for the U.S. Department of Energy

Accelerator Advisory Committee

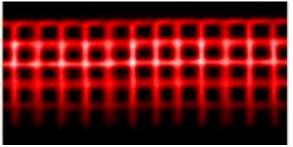
Development Highlights for FY2009

1st in-house produced ³He cells achieved >70% polarization; lifetime >300 h


Completed development beamline at HFIR CG-1

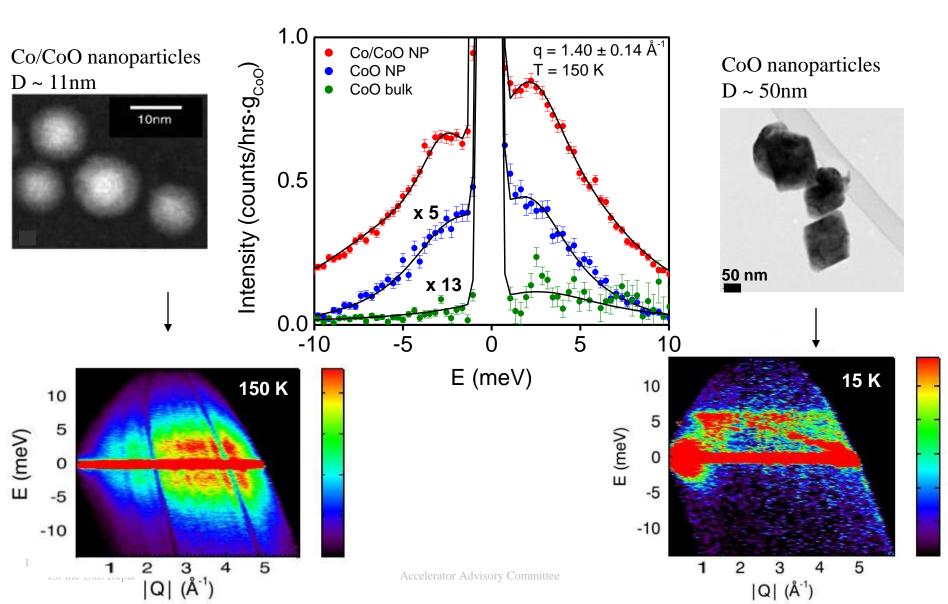

Installed new HVCM

9 Managed by UT-Battelle for the U.S. Department of Energy Correct elevation ~60 mm


Deployed stint to repair cryogenic hydrogen moderator

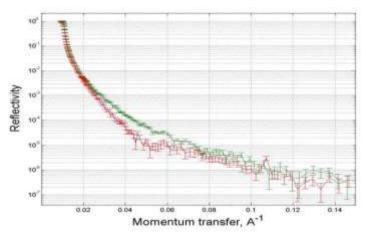
Replaced first target & proton beam window

Developed and deployed Target Imaging System



Developed world's best resolution neutron Anger camera (< 1 mm)

First observation of spin waves in Co/CoO and CoO nanoparticles M.Feygenson¹, M. C. Aronson^{1,2}, A. A. Podlesnyak³, J. L. Niedziela³, M. Hagen³


¹Brookhaven National Laboratory; ²Stony Brook University; ³ Oak Ridge National Laboratory

First neutron reflectometry experiment on ITO nanoparticle assembly

Valeria Lauter, Haile Ambaye, Jim Browning, Greg Smith, NScD; Ilia Ivanov, CNMS

- Indium tin oxide (ITO) is used in transparent conductive coatings for liquid crystal displays, flat panel displays, plasma displays, solar cells, and organic light-emitting diodes.
- ITO nanoparticles are assembled layer by layer onto cellulose fibers with poly (sodium 4styrenesulfonate) (PSS). To strengthen interaction between layers, the nanoparticle assembly is modified with polyethyleneimine (PEI). Samples are coated with either PEI-modified or PEIunmodified ITO.
- Reflectometry shows that the thickness of the polymer interlayer is what controls the electron transport between the layers.

Green and red curves in the lower plot mark the results of PEI-modified and PEIunmodified ITO composite films, respectively.

Infrastructure update

Joint Institute for Neutron Sciences	 Construction scheduled for completion in June 2010
ORNL Guest House	 Construction contract awarded for 47 rooms; construction to start in Feb-Mar
Science labs at HFIR	Operational
Science labs at SNS	 2nd floor CLO scheduled for completion in May 2010 Target building materials handling lab complete April 2010 Mercury and post beam sample handling labs scheduled for completion in Nevember 2010
Melton Valley	 completion in November 2010 Melton Valley Warehouse is complete and fully functional The contractor has been selected for the Melton Valley Maintenance Building and design is in progress
Chestnut Ridge	Cafeteria is open!

Our vision for HFIR and SNS remains on track

HFIR	SNS
 Build out	 Power Upgrade Project (PUP
instrument suite	CD-1 approved January 16
 Second Guide Hall	 2011: Start long-lead
and cold source	procurements

Neutron Science Support and User Facility

- - 2012: Construction
 - 2015: Completion
- Second Target Station CD-0 approved January 7
 - 2014: Construction
 - 2019: Completion
- **Complete instruments**

Good Progress on Second Target Station

- Analyzed linac capabilities and requirements
- Selected preferred site
- Assessed long-pulse option
- Joint US-Europe long-pulse instrumentation workshop
- Assessed options for proton beam transport
- Developed concept for solid rotating target
- Initiated safety assessments for rotating target
- Held "Town Hall" meeting with user community

What keeps me awake.....

- Building our science productivity and user base at SNS within diminishing budgets
- Safety record and operational discipline
- Accelerator reliability

The funding profile demonstrates the growing emphasis on delivering science

	FY 2008 (\$M)	FY 2009 (\$M)	FY 2010 Plan (\$M)
Accelerator and Site Operations	92.3	90.1	90.6
GPP	3.0	1.1	1.2
Development (incl AIP's)	42.0	41.4	42.1
Science	37.5	44.1	48.1
Total SNS operations	174.8	176.7	182.0
SING I	11.9	12.0	5.0
SING II	6.0	7.0	18.0
PUP			2.0
Reactor Operations	54.4	58.0	60.0
Total	247.1	253.7	267.0

15 Ivranaged by От-Башене for the U.S. Department of Energy

Accelerator Advisory Committee

Questions?